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Persistence in a stationary time series
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We study the persistence in a class of continuous stochastic processes that are stationary only under integer
shifts of time. We show that under certain conditions, the persistence of such a continuous process reduces to
the persistence of a corresponding discrete sequence obtained from the measurement of the process only at
integer times. We then construct a specific sequence for which the persistence can be computed even though
the sequence is non-Markovian. We show that this may be considered as a limiting case of persistence in the
diffusion process on a hierarchical lattice.
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[. INTRODUCTION either of them can be traced back to the fact that the under-
lying stochastic processes in both cases are usually non-
In recent years, there has been a lot of interest in the studylarkovian[1].
of persistence of fluctuations in different physical systems In this paper we study the persistence in stochastic pro-
[1,2]. Persistencé(t) is simply the probability that the de- cesses that are stationary under translations in time only by
viation of the value of a fluctuating field from its mean value aninteger multiple of a basic periotithout loss of gener-
does not change sign up to tirhePersistence has been stud- ality, this period may be chosen to be. Throughout this
ied in many nonequilibrium systeni4] and also in diverse paper we will refer to such processes as @l&tionary under
fields ranging from ecolog{3] to seismology{4]. Theoreti- integer shifty. For example, a Gaussian stochastic process
cal studies include various models of phase ordering kineticsill have the SIS property if its two-time correlation function
[5], diffusion equation[6,7], reaction diffusion systems in C(t;,t,) satisfiesC(t;+n,t,+n)=C(t,,t,) for all integer
pure[8] as well as disordered environmef®, fluctuating n. Such processes appear in many physical situations. For
interfaces[10], and various theoretical mod€l$1]. Persis- example, in weather records, there is an underlying nonran-
tence or first passage properties find simple applications idom periodic forcing(the motion of the Earth a round the
various chemical12], biological[13], and granular systems Sun), which makes the stochastic process not truly stationary
[14]. In laboratory experiments, persistence has been meda time. In nonlinear systems, even if one can filter out the
sured in various experimental systems including breath figperiodic component, the properties of the filtered sigealy
ures[15], liquid crystals[16], soap bubble§l7], and laser- variance would still be expected to show a periodic varia-
polarized Xe gas using NMR techniqugss]. tion with time. It seems worthwhile to study in more detail
In many of the nonequilibrium systems discussed abovepersistence in such SIS processes.

the underlying stochastic proceg$t) is nonstationary. For When one wants to study the persistence of SIS processes,
example, the two time correlation functiolC(tq,t,) the following question arises naturally: Is the probability
=(y(ty) ¥(ty)) for the diffusion equation depends on the P(t) that the process remains positive over the intej@dl]
ratio of the two timed,; andt,, and not on their difference the same as the probabilify,, that the process is positive
[6]. Persistence in such systems typically decays as a powenly at all then intermediate integer times between 0 aRd
law P(t)~t~? at late timest. The exponent, called the In other words, is the persistence of a “continuous” SIS
persistence exponent, is believed to be a new exponent andpgsocess the same as the persistence of the corresponding
apparently unrelated to the usual dynamical exponents th&tiscrete” sequence obtained by measuring the process only
characterize the decay ofpoint correlation functions with  at integer times?
finite n. Persistence has also been studied for stationary pro- The question regarding the difference between
cesse$19,2Q such as a stationary Gaussian process chara¢'continuous-time” and “discrete-time” persistence was
terized by its two time correlatio€(t,,t,) which is invari-  raised in Ref[22] for strictly stationary Gaussian processes,
ant underarbitrary time translation, i.e.C(t;+tg,to+1tg) motivated from the observation that in experim¢h8] as
=C(ty,t,) for all ty. In the stationary case, persistence be-well as numerical simulatiof23] of persistence in the diffu-
tween timest, and t, typically decays exponentially, sion equation, the measuremeriighether the process is
P(t1,t) ~exd —64t,—t4|] for a large time differenc¢20].  positive) are done only at discrete poin{separated by a
For some processes such as the diffusion equation the nofixed time window of size\) even though the actual process
stationary problem can be mapped onto a corresponding sté continuous. In Ref[22] it was shown that for general
tionary one[6] and the exponent of the nonstationary pro- stationary Gaussian processes, the continuous persistence de-
cess becomes identical to the inverse decay éatef the  cays asP(t)~exd—6.t] for large t, where as the corre-
corresponding stationary procedd. Despite many theoret- sponding discrete-time persisterodtained from measuring
ical studies of eithep or 6, exact results are known only in the data only at the intermediate time points separated by a
relatively few case$21]. The basic difficulty in computing fixed A) decays asP,,~ex{d —6yn], wheret=nA. In gen-
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eral, one would expect that the exponépis strictly greater  obtained by measuring the process only at the integer points.
than 64 for such a process since the process can change sigks noted earlier, in general, we expect thgt- 6. Consider
between two successive integer points. The expofigmtas  a stochastic procesg(t), which is known to be positive at
computed analytically in Ref22] for a Gaussian stationary the integer pointd=1,2,... N. Now consider the condi-
Markov process and was shown to depend continuously otional distribution ofis(t;) at some noninteger point lying

the window sizeA. within the interval[ 1,N]. This conditional distribution is a

In this paper we study the continuous-time versusGaussian whose width is independent of the valuag(of at
discrete-time persistence for SIS processes. We restrict outhe known integer points. If this variance is finite, even in the
selves to the study of discrete-time persistence only when thiémit when N is large, clearly, there will be finite probability
measurement points in time are integers. This is a naturalf ¢(t;) becoming negative. Thus one would expect to get
choice since the process is stationary only under integeg.= ¢4 only if the conditional variance af(t,) tends to zero
shifts in time. We show that unlike strictly stationary pro- for large N. In such a process, one should be able to deter-
cesses, in this case, the two exponehtand 64 can be equal mine i(t) for all realt, if one knows its value at all integer
under certain conditions. This discrete-time persistdhcef  points.

a sequence is also rather interesting from a purely math- This suggests the following constructionft) : we con-
ematical point of view, especially when the underlying pro-sider a sequence of independent random variapfe®)}
cessy(t) is Gaussian. In that case, calculatiRg becomes having zero mean, whenme {—,+=}, and we define a
the problem of calculating the probability that a setrof stochastic process(t) by the convolution

Gaussian random variables with a specified joint probability
distribution are all positive. This “one-sided barrier” prob-
lem has remained popular in the applied mathematics litera-
ture for many decad€dd9,20,24. But the number of cases ‘ﬂ(t):n:z_m f(t=n)¢(n). @)
where this probability can be explicitly calculated for large

remains rather smajR4].

In this paper we study a specially simple case of aKnowing ¢(t) at all integer points, one can expect to deter-
continuous-time stochastic procaegét) which is obtained as mine uniquely the constan{gb(n)} by solving coupled lin-

a local smearing of a sequence of independent identicallgar equations, which then determingg) for all real values
distributed random variables via a smearing functigt). of t.

This process becomes, by construction, a stochastic process The behavior of this process depends only on the smear-
whose probability distribution is invariant under time trans-ing functionf(t). In the following, we shall assume thi(t)
lations by integers, i.e., a SIS process. We construct exaas some good properties, i.e., is a non-negative unimodal
amples where)y< 6., and also construct a family of smear- function oft, which decreases sufficiently fast for largé

ing functionsf(t) for which 4= 6,. We provide a physical By a shift of the origin of timet, and rescaling/(t), we can
example, namely the diffusion equation on a hierarchical latassume that the maximum &ft) occurs att=0 andf(0)

tice where the diffusion field is a Gaussian stochastic process 1.

with the SIS property and we compute the corresponding What is the class of functiorigt) such thaty, equalséy?
smearing function exactly. We then determine exactly theThis class is not easy to characterize directly. A simple ex-
exponentd, for a specific case when the correlations in theample illustrates this point clearly. Consider the simple case
discrete sequence are nonzero only for consecutive valuesf triangular function

We find that in this case, the exponeft depends continu-
ously on the value of the correlation.

The paper is organized as follows. In Sec. Il we give
some examples of continuous SIS processes wligrés
strictly greater thandy, and we also construct a class of —0 otherwise. 3
processes for whicld.= 64. In Sec. lll we provide a physi-
cal example, namely the diffusion equation on a hierarchical
lattice where the diffusion process shows logarithmic- In this casey(t) is a piecewise linear function af If a
periodic oscillations. After rescaling, and a change of vari-<1/2, we have intervals in whiclt(t) is identically zero. If,
ables from timet to log(t), we get a stochastic process that however, we define persistence probability as the probability
has the SIS property. In Sec. Il we introduce a special sethat the function does nahange sigrup to timet, it is clear
qguence for which the persistence exponéptcan be com- that for alla<1, we havefd.= §,=1og 2.
puted exactly. Section IV contains a summary of our results. We now show that).# 64 if a>1. For this purpose, it is
sufficient to show that there are sequenigés} such that the
corresponding) process is positive at all integer points, but
takes negative value for nonintegerAs such events would
occur with nonzero probability along the sequend,

In this section we discuss the conditions under which the> 6.
continuous-time persistence of a SIS process is the same asLet n be the integer just below. We consider a periodic
the discrete-time persistence of a corresponding sequensequence ofh,, with

+ o

f(t)=1—|t|//a for |t|<a 2

Il. CONTINUOUS-TIME VERSUS DISCRETE-TIME
PERSISTENCE
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¢$i=1 if i=0 mod2n+1) d=4 between sites 7 and 8. At each diteve have a real
variable s(i). At time t=0, the fields at different sites are
assumed to be independent identically distribuied!) ran-
=0 otherwise. (4) dom variablegsay Gaussians of mean zero, and variance 1
The fieldsy(i) are assumed to evolve in time by the deter-
Then it is easy to see that if we choossuch that &—n) ministic equation
>(2a—1)c>(a—n—1/2), theny(t=i) is positive for all
integersi, but /(t=n+1/2) is negative. Clearly, these signs . . )
are not changed if allp’s deviate from these values by a a‘/’('): JZO Ki L)) = ()] ©)
sufficiently small amount. Then such sequences finite
length will occur with nonzero frequency, and hence for any  Here the spring constanig ; are assumed to be functions
a>1, 6 is strictly greater tharg, . of the distancel; ; between the two points. In the following,
However, there are functiorfgt) for which 6.=6,. The  we shall assume tha; ;=a %i, wherea is a constant
simplest example of this class f§t) =exp(-[t/a). In this  greater than 1. '
case, itis easy to see from H@) thaty(t) at any noninteger The integration of the equations of evolution is made par-
pointt can be expressed as a positive linear combination oficularly simple by the hierarchical nature of the spring cou-
its value at the two nearest integer points, so that fott all plings. It is easily verified that we have’?2" independent
=n+ ot with 0= dt<1 we have eigenmodes of relaxation rate at1) 'a """l (r
=1,2,...N—1), satisfying

=—c if i=n or n+1 mod2n+1)

N—-1

ot
Y(n+ot)= Sinhgl//(n'f‘l) (5) d
as}”= (a—1) ta "*ig", (10)
_(1=461) .
+sth P(n) [sinh(1/a)]. where
(6) 2r7171
Thus, if ¢(n) andy(n+1) are positive, Eq(5) implies that s= > ¢(j2—2""1-k-4(j2 k), (11
#(t) is positive for alln<tsn+1. Hence one get¥, k=0

- th le ab b lized. F | wherej=1 to 2" ".
.etex:mp € at OVe can etgenfera_llze f for et>_<amp €, one Expanding any particulag (i), say fori=1, in terms of
can introduce a two parameter family of functiorf{t) these eigenvectors, and we get

=exp(kit) for t<0, andf(t) =exp(—«,t) for t>0 with x4

>0 andk,>0 and are not equal in general. In fact, one can n—1
even introduce two arbitrary periodic functiogg(t) and P ()= 2 "2exd —(a—1)"ta "t it]h(r), (12
0»(t) (with period 1), and take r=1
f(t)=exd kit—gq(t)] for t<0 (7)  Whereg(r)’s are i.i.d. Gaussian variables of zero mean and
unit variance that characterize the initial condition. This for-
=exf[ — kot—g,(t)] for t>0 (8)  mula for the hierarchical model may be compared with the

corresponding formula one writes in the Euclidean spack in
without destroying the equality of, and #4. One only has dimensions
to impose some conditions @y (t) andg,(t) to ensure that
f(t) is unimodal. Effectively, we can take any unimodal S :fw 2
function f(t) defined in the intervat- 1<t<1, and extend it Wr=0 0 dkexp( =kt k), (13
to all realt using the conditiond (t—1)=e™ “1f(t) for t
<0, andf(t+1)=e"*2f(t) for t>0 to get a functionf (t) where 5(k) are the white-noise process with variance

for which 64 and 6, are equal. , d—1
(n(K) (k")) = S k™. (14

We eliminate the time variablein terms a logarithmic time
variabler using the identificatiom”™=t, and we changé(t)

A simple example of a physics problem where functionsby & change of scalei(7) =[a™]y{t=(a—1)a"]. Then we
of the type given by Eq(1) show up is the persistence of a have
diffusion field on a hierarchical lattice. The lattice may be
thought of as a line haviniy=2" sites labeled by an-bit
binary integeri,0<i<N-1 [25,26. We define the ultra-
metric distance between two siteandj asd, if the binary
integers denoting andj differ at then—d+1 bit counting  For large 7, the summation over can be extended from
from the left. Thus we havd=1 between sites 2 and 3, but — to +«, and the procesg(7) then becomes a Gaussian

IIl. PERSISTENCE IN DIFFUSION EQUATION ON A
HIERARCHICAL LATTICE

(r)=2, Erexd —a Jalm " (15
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process with the SIS property, i.e., is stationary only under C j:gz[(1+ €2) 6, (T e(Sio1jt -], (19
integer shifts in time and is obtained by local smearing of the ' ' v
discrete white noiseg(r)’s, where &, ; is the Kronecker delta function andr?
Foo =[”_.¢*p(¢p)de. Thus the parameterserves as a measure
W(r)= 2 f(r—r)(r), (16) of the qorreIann and it is this correlation that makes the
r=—o calculation ofP,(€) nontrivial for nonzeroe.
) ) The sequencéy,,} defined by Eq(18) is non-Markovian
where the convolution functiorii(r) clearly goes tq Zero in the sense that if onlyy,,} are observed, and not tie's,
whenr tends to+. Thus, the problem of calculating the , depends not just on the previous member of the sequence

nentsé; and y for a process defined by given convolution example, from Eq(18) one can expresg, as
function f(t)=exp(—a')a’?. The origin of the SIS property

here comes from the discrete scale invariance of the original n-1
model, which_ gives rise to logarithmic-periodic oscillations U= E (=) eyt dn— €"bo, (20
in the relaxation process¢27]. k=0

We have not been able to determine whether for this func-
tion f(t), the exponents,, andd, coincide, or are different. Which demonstrates explicitly the history dependence of the
However, in a simple Monte Carlo realization of a sequencéeguence. For non-Markovian sequences, it is generally hard
of 10° Gaussian variablelsp; }'s of zero mean and unit vari- 0 compute the persistence exponent. Fortunately progress
ance, we did not find any instance where the funciig) can be .made for this special sequence even though it is non-
changed sign twice between two consecutive integers. Thi¥larkovian.
indicates that these exponents, if not equal, are likely to be In order to calculaté®,(e), it is first useful to define the
quite close to each other. following probabilities:

IV. EXACT RESULTS FOR A SPECIAL CASE _ fw
X)=1[ d ,
Q1(x) ) $bop(Po)

For a smearing functiof(t) for which 6.= 64, the com-
putation of the persistence exponent simplifies considerably, B .
and reduces to its determination for a discrete sequence Qn(X)ZJ dd’op((ﬁo)f deéip(by)
rather than a continuous process. But even then, the exponent X —edy
04 is quite nontrivial for an arbitrary smearing functid(t). .
For calculatingéy, only the values of (t) at integer points Xf dpop( o)
are relevant. In the following, we shall consider in detail the #1
calculation of64 when onlyf(0) andf(—1) are nonzero. .
This can be thought of a crude approximation to the smear- xf don_1p(dn_1), N=2. (21
ing functionf(t)=exp(—a')a’?, as in the diffusion equation —€pn—2
on a hierarchical lattice, which decreases superexponentially
for t>0 and only exponentially for<0 for a>1. We will Using the definitions in Eq(18), it is then easy to see that
show below that the exact computation @f is nontrivial ~ the persistencé®, (€)=Q,1(—). This is due to the fact
even for this toy smearing function since the resulting sethat for all they;’s in Eq. (18) to be positive, whilep, is free

—€

guence is hon-Markovian. to take any valueg, must be bigger than- e¢y, ¢, must
In this special case, Eq16) becomes be bigger than—e¢4, and so on. Differentiating Eq21)
with respect tax, we get the recursion relation
bi=ditedi, 1=12,...n, (17
. - dQp(x)
where we shall assume thiab;} are independent identically X - —p(X)Qp_1(— €Xx), n=1, (22)

distributed random variables, not necessarily Gaussian, each
drawn from the same distributign( ¢). Here e is a mixing ) »
parameter. For convenience, we relabel @ig without any ~ With Qo(x)=1 and the boundary conditio,()=0 for
loss of generality to consider the following sequence: alln=1. Let us define the generating function

pi=dited_,, i=12,...n. (18

For simplicity, we will assume thai(¢) is symmetric about
the origin. The mean value @b is then zero. We now ask: ] o ]
what is the probabilityP,(e) that ¢y ,is, . .. 4, are all From Eq.(22) it follows that F(x,z) satisfies a first order

F(x,z)=n§1 Qn(x)Z". (23

positive for a givene? nonlocal differential equation:
We note that the variableg;’s are now correlated. The Fx.2)
two point correlation functionC; j=(#;¢;) can be easily X.2) B
computed from Eq(18), X p(x)Z[1+F(—ex,2)], (24)
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with the boundary conditiof (e,z) =0 for anyz Once we B. The case whene=1

k?owttrf]we gmctlﬁ)nl_:(;(,z),an(e) can be obtained by evalu-  Next we consider the case=1. We first make a change

ating fhe Lauchy integra, of variable, u(x) = [%p(¢)de. Let F(x,2)=F(u,z). Since
p(¢) is symmetric about zeraj(—x)=—u(x) and hence

L F(==.2) F(—x,2)=F(—u,z). Using this in Eq.(24) with e=1, we

Pn(€)=Qpi1(—2)= 21 e —2—dz (29 find
over a contourC, encircling the origin in the complex dF(u,2) = —1+E(-u,2)], (29)
plane. au
Before proceeding to solve E(R4), we make the simple ) N
observation that whereu varies from—1/2 to 1/2 and the boundary condition
is F(1/2,2) =0 for all z. Differentiating Eq.(29) with respect
to u we get a local second order differential equation
n(€)=P ( ) (26 S~
J°F(u,z) ) -~
oz - Zli+Fu2)] (30)

true for anye. To see this, we first rescale thig variables,
Wi = le. Clearly the persistence af;"’s is the same as Wwhose general solution is given by
that of they;’s. Dividing Eq. (18) by €, we see that in order -
for the ¢,"’s to be positive, we need to satisfy the conditions: F(u,2)=—-1+[ag(z)][cogzu)—sin(zu)]. (3D
bo>—Prle, dp1>—ddole, ..., pn_1>—¢d,le where ¢,
can be arbitrary. Equatiof26) then follows once we relabel The boundary conditiof(1/22)=0 determinesag(z) and
éi— ¢,_; for all 0<i<n. Thus it is sufficient to compute We finally get

Pn(e) for e only in the range—1<e<1. Once we know .
this, Pn(¢) for |[¢[>1 can be obtained from E26). F(x,2)=—1+ cogu(9z] = sifu(x)z] (32)

Let us summarize our main results. We show that for ’ coqz/2) —sin(z/2)

—1<e<1, P,(e)~exd —6(e)n] for largen, whered(e) de-
pends continuously oa and also depends on the distribution
p(¢®). In contrast, ate=1, the exponent(1)=log(#/2) is
independent of the distributiop(¢). The exponentd(e)
diverges ak— — 1, indicating a faster than exponential de-
cay of P, for large n. We show thatP,(—1)=1/(n+1)!
exactly for alln=1, again independent of the distribution P,(1)=2>,

p().

Thus,F(—,z) =2/ cot(z2)— 1]. This function has poles at
z=/2+2ma, wherem is an integer. One can then easily
evaluate the contour integration in E@5) and we get the
exact expression,

(33
2

e
—+2m77)

A. The case whene=—1 valid for anyn=0. For example, by summing the series in

Let us first consider the cage= — 1. In this case, Eq24) Eq. (33) we find Py(1)=1, Py(1)=1/2, P,(1)=1/3,
becomes local and can be easily solved by integration. FdP3(1)=5/24, etc. which can also be verified by performing
symmetricp(¢) with zero mean, the exact solution is given the direct integration in Eq(21). The remarkable fact is
by P,(1) is universal forall n=0 in the sense that it is inde-

. pendent of the distributiop(¢), as in thee=—1 case.
X
F(x,z)=—1+ex;{ (E—J’ p(X')dX') ,
0

@27) Clearly the leading asymptotic behavior is governed by the
m=0 term in Eq.(33) and we getP,(1)~exd —#(1)n] for
large n, with 6(1)=Ilog(w/2). Clearly the exponenf(1) is

: . . also universal.
\IIEVh'Ch g.""t'Sft'ﬁs the bountr:ialry C%ﬂdltlﬁ(%,z)—o fo][ all Z('j Interestingly, P,(1) is related to the fraction of meta-
x.pan 'ng e.e.x.pone.n lal in Eq27) in p.owers otz anl stable states in an Ising spin glass on a one-dimensiabal
using the definition in Eq.(23), we find Q,(X)=[7 |attice ofn sites at zero temperatuf@8]. Consider the spin
— [op(x")dx']"/nl. Using the relatiorP,=Qy,1(—>) and  glass Hamiltonian on a chaitd=—3,J; . 15;S;+1, Where

the normalization conditiori” .p(x’')dx’ =1, we get si==*1 are Ising variables and the bondis_’s are inde-
pendent and identically distributed variables each drawn
1 from the same symmetric distribution with zero mean. Out of
Pn(—1)= (28)  the 2" number of total configurations, how many are meta-

(n+ 1)t stable with respect to single spin flip Glauber dynamics at

zero temperature? A configuration is metastable at zero tem-
for all n=1. RemarkablyP,(— 1) is independent of the dis- perature if the energy changeAE=2s][J;_1;Si-1
tribution p(¢) for all n=0. +Jii+1Si+1]=0 due to the flip of every spis;. Defining
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the new variablep;=2J; ; ;1S;S;+ 1, we see that the variables
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TABLE I. The exponen®(e) for some representative values of

¢;'s are also independent and identically distributed and the in the range~1<e=<1 in the case of the uniform distribution in
probability that a configuration is metastable is precisely theEd. (34).

probability that the variables);,= ¢;+ ¢; _, are positive for
eachi. This is preciselyP,(1) as computed in the previous

paragraph. We note that the average number of metastable
configurationsNg) for the 1d spin glass was computed ex-

actly by Derrida and Gardn¢R9] by a different method and
they found(Ng)~ (4/7)" for large n. Thus the fraction of
metastable configurations scales @$)/2"~(#/2)"", in
agreement with our exact result f&x,(1).

C. The case—1<e<1

We now turn to the range-1<e<1. In this range we
were unable to calculate,(e) exactly for arbitrary distribu-

€ 0

1.0 log(@/2)=0.455 . . .
3/4 0.469 . ..

1/2 051%...

1/4 0.582. ..

0 l0g(2)=0.693L . . .
—-1/4 0.846 ...
—-1/2 1.096 . ..
—3/4 1.56% ...

tion p(¢). However progress can be made for the uniformgt yncorrelated variables. As—— 1, the functionf(z) in

distribution,

1

p(¢)=7 for —1<¢=<1=0 otherwise. (34

For this case, it follows from Eq24) that F(x,z) is inde-
pendent ofx for x<—1 and hencefF(—«,z)=F(—172).
Similarly, F(x,z)=0 for all x=1. In the range;- 1=x<1,
we expand-(x,z)=27b,(z)x™ in a power series ix. Sub-
situting this series in Eq24), we get the recursion relation,
bm=—bm_12(— €)™ 1/2m for all m=1. Thus the function
F(x,z) can be expressed completely in terms of objyz)

Eq. (35 approaches(z)—exp(—2), indicatingz, —c°. In-
deed, by setting=—1+ 6 in Eq. (35) it is easy to see that
z,.~/8/5 as 6—0. Thus the persistence exponent diverges
asf~log[\8/(1+¢€)] ase——1.

For other values of in the range—1<e<1, it is easy to
evaluatez, to any arbitrary accuracy from E@35) using
MATHEMATICA . The exponent=log(z,) for some represen-
tative values ofe in the range—1<e<1 are listed in Table
I. The exponent(e) increases monotonically adecreases
from + 1 to — 1, diverging ass— — 1. For|e|>1, the expo-
nent is determined from the relatioi(e) = #(1/€). Thus in
the whole range;-»<e<w, the exponent(e) is a non-

which is then determined from the boundary conditionmonotonic function ofe. As e varies from—o to o, 6(¢)

F(1,2)=0. This determine$ (x,z) completely in the range
—1=x=<1 and we find~F(x,z) = — 1+ f(x2)/f(z), where

* (_ 1)m(m+1)/2

f(z)= 2,

z m
E) e_m(l’ﬂ—l)/Z. (35)
Using F(—«,z)=F(—1,2), we finally get

f(—2)

F(—o f2)

,2)=—1+

(36)

wheref(z) is given by Eq.(35). We note that the series in
Eq. (35 and hence in E(.36) is convergent for alg as long
as—1<e<l1.Infact, fore=1, itis easy to see that E(36)
givesF(—,z)=2/ cotz2)— 1] as before.

Substituting Eq.(36) in the expression oP,(e) in Eq.
(25), we find that the leading asymptotic decay Bf for
largen is governed by the pole ¢f(—<,z) that is closest to
the origin. From Eq.36), the poles ofF(—,z) in the z
plane are precisely the zeroes of the functi¢z) in Eq. (35)
in thez plane. In particularP,,(e) ~z.." for largen wherez,
is the zero off(z) in Eq. (35 closest to the origin. The
persistence exponent is then simphs log(z,). Let us first
consider a few special cases. For 1, we find from Eq.
(35), f(z)=cos@2)—sin(z2), indicatingz, = w/2, a result
we already obtained. Far=0, we find from Eq.(35), f(2)

increases monotonically in the ran§je-«,—1], then de-
creases monotonically ifn—1,1] followed by a further
monotonic increase in the ranfigee]. The slowest decay of
P, occurs ate=1, whereé(e) is minimum and given by the
universal valuef(1)=log(#/2).

Except ate=0, 1, and—1, the exponen#(e) is nonuni-
versal in the sense that its value depends on the details of the
distribution p(¢#). To see this explicitly, we now compute
0(e) perturbatively for smalle. We expand the right-hand
side of Eq.(24) up to ordere and then solve the resulting
local differential equation exactly to determifé€x,z) up to
O(e). Taking thex— —<o limit in the expression of(x,z),
we find

2z

F(—,z)= [2—2—2CP(0)622] ,

(37)

wherec= [ ¢p(¢)ded. From Eq.(37) the pole closest to the
origin is given by

z.=2[1—4cp(0)e+O(€?)]. (39
From Eq.(25) it then follows thatP,(e)~z," for largen.
Henced(€) =log(z,)=log(2)—4cp(0)e+O(?) and is clearly
nonuniversal, as seen from the nonuniversality of @{e)
term in the previous equation. For example, for the uniform

=1-1z/2, indicatingz, =2, as expected for the persistence distribution in Eq.(34), we getf(e)=1log(2)—e/2+O(€?).
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On the other hand, for the Gaussian distributigif¢p)  Sequence. The exponemy depends continuously on the
=(27) " Y2exp(— ¢%2), we getd(e€) =log(2)—2e/ 7+ O(e). strengthe of the correlation. Remarkably far=1 ande=
—1, the persistence becomes universal. Eerl, we have
V. CONCLUSION shown an interesting connection between the persistence of
this sequence to the average fraction of metastable states in a
In summary, we have discussed persistence in stochastighe-dimensional spin glass.
processes that are stationary only integer translations of time. The class of function§(t) for which we could show that
Such a process can be explicitly constructed by smearing = g, is perhaps not the most general. A precise character-
independent noises with a convolution functidt). A jzation of this class seems like an interesting problem. Cal-
physical example of such a process is provided by the diffuzyjation of the persistence for SIS processes, or sequences,
sion field on a hierarchical lattice for which we have com-yyith correlations extending beyond nearest neighbors may be
puted the smearing functidift) exactly. However, we could possible in some special cases, and would help understand

not compute the persistence exponefif®r d in this case.  the general question about the dependence of the persistence
We showed that under certain Condltlons, the Con“nUOUSexponent on the correlations in the sequence.

time persistence of such a process reduces to the persistence

of a discrete sequence obtained by measuring the process

only at integer times. We have constructed a_spgcmc non- ACKNOWLEDGMENTS
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